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Abstract We study localization of states and transmittance of a one-dimensional lattice with 
incommensurate rapidly varying pseudo-random potential. when site energies am dimerized. The 
chosen model potential, V = Vn cos(2rian"), DI irrational, v > I and dimerization, is a peculiar 
generalization of the random-dimer binary model and allows careful control of the localization 
properties for varying degrees of disorder. We find that insertion of short-range order in the 
form of adjacent site energy dimerization, causes. in gened. a smng increme of the localization 
lengths and the behaviour of the Lyapunov exponent as a function of the energy is similar to 
commensurate situations. In particular for v > 2. the binary alloy situation is reproduced and 
we confirm the presence of extended states near the two-site energies. 

1. Introduction 

It is a well established result that a one-dimensional lattice with randomly distributed 
site energies is characterized by a spectrum which exhibits complete localization of 
wavefunctions (Anderson 1958, Ishii 1973, Roman et al 1986). This is atso true, in 
particular, when the site energies assume only two distinct values (random binary alloy). 
At first sight, it could appear reasonable to expect that if we systematically assign to each 
couple o f  adjacent sites the same random site energy, the random-dimer binary alloy so 
obtained should obey the localization law mentioned before. 

However, it has been recently suggested (Dunlap et a1 1990) that i n  a one-dimensional 
random-dimer binary model some wavefunctions may become extended, corresponding to 
narrow energy intervals around the two energies EA and E g .  This fact can be taken as 
a starting point for the explanation of the insulator-metal transition occurring in polymers 
such as polyaline with disorder induced by protonation Oyu et al 1991, Wu et a1 1992). 
The qualitative argument is that by assigning the same random energy to adjacent sites, this 
is equivalent to inserting short-range order in a globally disordered system and this can ease 
(for some energies) the propagation of the electron through the lattice. This result appears 
rather surprising, and for this reason interest in the problem is widespread; however, various 
numerical and semi-analytic approaches adopted so far have not, until now, unambiguously 
clarified whether delocalization occurs or not (Gangopadhyay et a1 1992, Evangelou er a1 
1992, Datta er a1 1993% b). 

Our purpose is to investigate, in a more general way, the effects of this kind of short- 
range order, when 'inserted in an aperiodic potential. For this reason we have found it 
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useful to apply the operation of 'dimerization' (i.e. doubling of site energy) in situations 
that generalize the binary distribution. For this aim we have chosen to investigate the rapidly 
varying incommensurate potentials of the form 

v, = V~cos(2zO1~nl") U > 1 (1) 

the integer n indicates the site position, 01 i s~an  irrational number (0 c 01 < 1). This 
potential has been widely studied in its asymptotically slowly varying version (0 < U < 1) 
(Das S m a  er al 1988, 1990, Farchioni et al 1992, 1993) and in the Aubry model (U = 1) 
(Aubry et al 1979, Dominguez et al 1992). In the case 1 < U c 2, the spectrum shows 
a complete localization of wavefunctions at any energy except the value E = 0 (Thouless 
1988); if U 2 2, the potential is pseudorandom. Therefore the exponent, U, allows gradual 
modification of the degree of disorder of the system and makes it possible to follow the 
effect of dimerization on the spectrum of (1) for different disorder strengths. 

2. Numerical method 

In this section we briefly present the numerical method we used for the investigation of 
the localization properties of the model described above. It is an application of the general 
renormalization technique (see, for instance, Giannozzi et af 1988 and references therein) 
to the one-dimensional nearest-neighbour tight-binding Schrodinger equation of the form 

r(u,+l +U"-]) +a& = Eu, (2) 

where a, = V, given by equation (1) and the energy scale is fixed by t = 1. The operation of 
renormalization consists in removing iteratively the sites 1,2, . . . , N of the lattice. obtaining 
the effective energies of the extreme sites and the effective hopping interaction between them 
through the following three iterative equations 

The quantity which gives information on the localization of states is the effective 
interaction $.?(E) which presents oscillating behaviour in the case of extended states, 
and rapidly decreasing behaviour in the case of exponentially localized states. The 
Lyapunov coefficient y ( E )  (inverse localization length) is directly available from the 
effective interaction r&'(E) through the following asymptotical relation (Farchioni et al 
1992) 

We underline that this technique is numerically very stable; the logarithmic form of equation 
(4) allows to process as many sites as necessary (more than lo9 when useful) without 
occurrence of underflow errors that one generally encounters when dealing with vanishingly 
small quantities. 
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3. Results 

In this section we discuss our results concerning the effects of the 'dimerization on two 
models of pseudo-random incommensurate potentials. Dimerization in this case means that 
each energy of the pseudo-random law is repeated in the following site. Firstly, we will treat 
a potent.ial model which can assume just two values, reproducing a binary model. Then we 
will discuss the more general case of a cosinusoidal rapidly varying law pith various degree 
of pseudo randomness. Finally, we will show the transmission properties of the system. 
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Figure 1. Pictorial view of the potential V, = !4cos(2roinY) (?ns = 1.2. U = 2.5) in its 
'rectified' version (see text) in the cases: (a) low site number n (the siteenergies are represented 
with circles) and (b)  high site number n. 

3.1. Binary model 

Before studying directly the potential model (1) we can take into consideration its 'rectified' 
version: V = VO when V, z 0, V = -VO when V, e 0 (see figure I(a) for low II values 
and figure l (b)  for large n values) for 2ria = 1.2 and for v = 2.5 (the results, if v # 1, 
are independent from the value of CY). As can be seen from figure I@), this type of 
potential with v > 2 can be considered the pseudorandom version of the random binary 
model studied by Dunlap et al (1990). When the pseudorandom energies are repeated at 
adjacent sites (dimerization), we can see that in two~narrow energy intervals around the 
values ib, the Lyapunov coefficient y(E) approaches zero following a quadratic law; as 
is so for the random model (Evangelou et al 1993, Bovier 1992). In figure 2(a) we show 
the sharp p a k s  of the localization length in the case of VO = 0.5 and in figure 2(b) the 
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Figure 2. (U) Behaviour of IocaJization length (in a logarithmic scale) for the pseudorandom 
potential V, = @ ~ c o s ( k a n Y )  (%U = 1.2. Y = 2.5) in its 'rectified' version of figure 1; 
dimerized case (full lines) and not-dimerized case (dashed line). Here Vo = 0.5. and the sharp 
peaks at E = AV,, are visible. (b)  Behaviour of the Lyapunov coefficient as a function of the 
energy n w  E = NI. Even if the value of y ( E )  is very low it is clear chat it vanishes in a 
quadratic way around E = VO. A similar behaviour is present for E - -@I. 

quadratic behaviour of y(E) near E = Vw We also confirm that this behaviour is observed 
if the differences, A, between the two dimer binary energies are less than the critical value 
Ac = 2, where I is the nearest neighbour interaction. For A = A,. y(E) approaches zero 
linearly, and for A > Ac extended states disappear. Therefore, within our rapidly varying 
'rectified' incommensurate potential model, we confirm the delocalization of the states near 
the two energies assigned to the sites of the chain. To stress this result more clearly, we can 
consider, for instance, the case of exponent v = 2.5, potential amplitude V, = 0.5, and the 
state of the spectrum with energy corresponding to V,. We show in figure 3 the behaviour 
of the effective interaction ti?(@ as a function of N :  its oscillatory and regular behaviour 
beyond IO8 renormalizations is an unambiguous sign of the presence of an extended state. 

3.2. Generalized model 

Let us now investigate of the more general case of the potential (1). The mechanism of 
dimerization we described before when applied to potential (1) can be formally expressed 
as follows 

V, = V~cos(2noll(n/2)IY) (5 ) 

where (n/2) indicates the integer part of n/2. A pictorial view of this potential is reproduced 
in figures 4 for low.and high values of site n,  in the case 2na = 1.2 and w = 2.5. We 
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Figure 3. Behaviour of the logarithm of absolute valne of effective hopping interaciion r E n ( E )  
for the potential of figure 1 as a function of the number of renormalized lattice sites. at the 
energy E = 0.5, equal to the value of 6,. It is dearly visible the oscillatory behaviour of 
r,jCi‘(E) up to N = IOx renormaliwtions, indicating the extended naNre of the state. 

have found that the operation of ‘doubling’ the site energies produces a deep change in the 
behaviour of the inverse localization length. As another important point, we have observed 
that when the system has a moderate degree of disorder (1  < U < 2 ) .  the above dimerization 
does not determine complete delocalization of the states, even if our results in general show 
a strong decrease of the inverse localization length y ( E )  in narrow energy regions around 
the site energies of the lattice. We have verified that the general behaviour of y ( E ) ,  around 
E = 0, for the potential (3, is very similar to the behaviour it assumes in the case of 
low-order rational approximations of the number ci, even if the distribution of eigenstates 
and their spatial localization properties in the spectrum are quite different. For this reason, 
before showing our results on a pseudo-random incommensurate potential, we investigate 
what happens for its periodic approximants, i.e. when we dimerize according to the law (5) 
the site energies in periodic cases (v = 1 and 01 = l / N ) .  In the periodic case we have a unit 
cell of 2N sites; the resulting spectrum is composed by 2N bands disposed around E = 0, 
the centre of the spectrum, which lies in an energy gap. The effect of dimerization of the 
periodic case is to open a gap around E = 0 when N is odd; if N is even (and N > 2), the 
width of the gap pre-existent in the non-dimerized case increases. We can recall the fact 
that the presence of a gap in the centre of the spectrum is a common feature in the case of 
a doubling the elementary cell dimension, as suggested for one dimensional lattices (Peierls 
1955). 

With these few points in mind, let us now consider, the results Eor the Lyapunov 
coefficient y ( E )  for the incommensurate asymptotically rapidly varying potential (1) in 
the’case w = 1.5 and dimerization (5). In figure 5 we have reproduced the plots for y ( E )  
(solid lines) for VO = 0.1, VO = 0.2 and VO = 0.3. They are compared with y ( E )  in a 
simple periodic dimerized case (a = 1/4, dashed line). As said before, the most surprising 
fact is that in the incommensurate case the behaviour of y ( E )  near E = 0 is very regular 
and very similar to the periodic case where the gap is recovered. After this regular part for 
the incommensurate potential, the plot of y ( E )  shows a tail fluctuating around very low 
values, (* for low values of Vo) indicating a strong delocalization effect but not a 
transition toward genuine extended states. This behaviour of y ( E )  has been verified for 
energies up to Vo; for energies E 2 Vo, the Lyapunov coefficient starts increasing, as can 
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Figure 4. PiClQnaJ view ofthe polential V, = ~ l c ~ s ( Z n o r ( n / Z ) * )  (Zna = 1.2, v = 1.5); ( 0 )  

IOW site number n (the site energies are represented with circles) and; ( b )  high site number, 

be seen from figure 6, which represent the plots of y(E) in the cases VO = 0.5 and VO = 1 
both for the dimerized potential (5) and for the not-dimerized potential (1). We can remark 
on the fact that if in the random binary model the dimerization of the lattice is decisive for 
the transition of some electronic states toward an extended nature, in the more general case 
of potential (1) the propagation of the electron is strongly enhanced if its energy coincides 
with one of the values assumed by V,; however, this condition stops at E - VO, and this 
explains the increase of Lyapunov coefficient. 

We can observe in figure 6 that insertion of short-range order modifies the behaviour 
of the wavefunction localization lengths making it very similar to a simple periodic case, 
where dimerization causes opening of a gap around E = 0. In spite of the similarity of the 
plots of y ( E )  in figure 5, we stress the fact that in the aperiodic case no gap is present, 
and we have explicitly verified this fact by means of calculations of density of states. 
Dimerization tends to assign to the eigenstates of the part of the spectrum near E = 0 an 
inverse localization length very close to the Lyapunov exponents corresponding to the gap of 
the ordered system (see figure 5). As a consequence, near E = 0, the Lyapunov coefficient 
in the case of dimerization is greater than for the not-dimerized system (see figure 6). This 
fact can appear rather surprising because it means that in this energy interval the states are 
more localized in the more ordered system than in the less ordered one. 

3.3. Consequences on the transmittiviry 

As a confirmation of these results, we have made some calculations of the transmittivity of 
the system using the transfer matrix technique (see, for instance, Douglas Stone et ul 1981). 
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Figure 5. Comparison of Lyapunov coefficient for the aperiodic (&a = 1.2, v = 1.5) dimerized 
case (full lines) and for its commensurate rational approximation dimerized case with a = 114 
(dashed lines) in the cases !4 = 0.1, = 0.2 and vl, = 0.3. In the aperiodic case, y ( E )  
assumes always non-zero value. 
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Figure 6. Comparison of Lyilpunov coefficient in the dimerized (full lines) and not dimerized 
(dashed Ones) aperiodic cases (2xu = 1.2, Y = l.5) for Vu = 0.5 ( 0 )  md !4 = 1 (b). Near 
E = 0, y ( E )  in the dimerized m e  is greater than in the notdimenzed case, indicating a 
stronger localization in a more ordered system. Beyond this zone, ? ( E )  for dimerized potential 
decreases, showing a tendency to delocalization. This tendency stops at E - Vo, where y(E7 
begins IO increase. 
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While in order to clarify the extended or localized nature of eigenstates, we performed 
typically IO7, IOs renormalizations so as to guarantee the control of a practically infinite 
system, now we want to emphasize the surprising effects of local order on more spatially 
limited samples, for instance composed by IO3 sires. In this case, the system is shorter than 
the typical values of the localization length for the dimerized case, except in the energy 
interval around E = 0. We have therefore, to expect from the system, a good transmittivity 
in the interval -VO 5 E 5 VO with the exception of the zones mentioned before where the 
transmittivity has to be near zero. This is confirmed by figure 7 where we have compared 
the dimerized and not dimerized case near E = 0. We can see that the enhancement of the 
Lyapunov coefficient in this part of the spectrum has as the consequence that the dimerized 
(and more ordered system) has a lower transmittivity than the not-dimerized case. This 
conclusion is valid also for the conductance. 

1 00 

10.' 

1 O F  

-0.20 -0.10 0.00 0.10 0.20 
Energy 

Figure 7. Comparison of the logarithm of transmittance in the aperiodic (Nil = 0.5. 2nu = 1.2, 
v = 1.5) dimerized case (full line) and not-dimerized case (dashed line) For a sample of IO' 
sites. The tnnsmittiviry is in general higher in the dimerized system. because the localization 
lengths are companble with the length of the sample. It is interesting to observe. however. that 
near E = 0 (corresponding to the arc in the plot of Lyapunov coefficient) the dimerized system 
has transmittivity lower than the less ordered not-dimerized one. 

In figures 8 we show the corresponding results concerning Lyapunov coefficient and 
transmittance for the pseudo-random potential (1) and U = 2.1 (strong disorder). All the 
considerations made for the case 1 e U e 2 remain valid, even if in a weaker sense, In 
this case the behaviours of y ( E )  for dimerized potential (figure 8(a)) are not so regular, 
however, the same 'bell' feature of the plots is visible near E = 0 and it is followed by a 
general decrease of y ( E )  until E - VO. Beyond this value the electronic propagation is not 
favoured because of the dimerization of the system. In this case the Lyapunov exponent 
around E = 0 remains smaller than in the not-dimerized case and then, as usual, longer 
localization length in the more ordered system is found. The reduction of the inverse 
localization length has its counterpart in an enhancement of the transmittivity (figure 8(b)), 
with the exclusion of the region around E = 0 where instead transmission is suppressed. 

4. Conclusions 

By means of calculations of inverse localization length y ( E )  and transmissivity of a 
dimerized lattice with rapidly varying incommensurate and pseudo-random site energies, 
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Figure 8. ( U )  Comparison of Lyxpunov coefficient in the m e  of aperiodic strongly disordered 
(V) = 1, 2na = 1.2, Y = 2.1) dimerized case (full line) and not-dimerized case (dashed line). 
( b )  Tmsmittivity of the system in the aperiodic strongly disordered case (Vo = 1, 2na = 1.2. 
U = 2.11. 

we have found that the behaviour of y ( E )  changes greatly if compared with the not- 
dimerized system. In particular, near E = 0 it becomes surprisingly more similar to that of 
a simple periodic approximation than to that of the not-dimerized potential. This is a sign 
of the strong effect of the local order that we impose with the operation of dimerization. 
In agreement with this fact, in the binary potential, we confirm delocalization of electronic 
states near site energies. 
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